10 research outputs found

    In situ formation and photo patterning of emissive quantum dots in small organic molecules

    Get PDF
    Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. Here we report a novel method for the fabrication and patterning of metal selenide nanoparticles in organic semiconductor films that is compatible with solution processable large area device manufacturing. Our approach is based upon the controlled in situ decomposition of a cadmium selenide precursor complex in a film of the electron transporting material 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBI) by thermal and optical methods. In particular, we show that the photoluminescence quantum yield (PLQY) of the thermally converted CdSe quantum dots (QDs) in the TPBI film is up to 15%. We also show that laser illumination can form the QDs from the precursor. This is an important result as it enables direct laser patterning (DLP) of the QDs. DLP was performed on these nanocomposites using a picosecond laser. Confocal microscopy shows the formation of emissive QDs after laser irradiation. The optical and structural properties of the QDs were also analysed by means of UV-Vis, PL spectroscopy and transmission electron microscopy (TEM). The results show that the QDs are well distributed across the film and their emission can be tuned over a wide range by varying the temperature or irradiated laser power on the blend films. Our findings provide a route to the low cost patterning of hybrid electroluminescent devices

    Effect of Femtosecond Laser-Irradiated Titanium Plates on Enhanced Antibacterial Activity and Preservation of Bacteriophage Stability

    Get PDF
    Funding Information: This work has been supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/4/20/638). Publisher Copyright: © 2023 by the authors.Titanium (Ti) is widely recognized for its exceptional properties and compatibility with medical applications. In our study, we successfully formed laser-induced periodic surface structures (LIPSS) on Ti plates with a periodicity of 520–740 nm and a height range of 150–250 nm. To investigate the morphology and chemical composition of these surfaces, we employed various techniques, including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Additionally, we utilized a drop-shape analyzer to determine the wetting properties of the surfaces. To evaluate the antibacterial activity, we followed the ISO 22196:2011 standard, utilizing reference bacterial cultures of Gram-positive Staphylococcus aureus (ATCC 25923) and Gram-negative Escherichia coli (ATCC 25922). The results revealed enhanced antibacterial properties against Staphylococcus aureus by more than 99% and Escherichia coli by more than 80% in comparison with non-irradiated Ti. Furthermore, we conducted experiments using the Escherichia coli bacteriophage T4 (ATCC 11303-B4) and the bacterial host Escherichia coli (ATCC 11303) to investigate the impact of Ti plates on the stability of the bacteriophage. Overall, our findings highlight the potential of LIPSS on Ti plates for achieving enhanced antibacterial activity against common bacterial strains while maintaining the stability of bacteriophages.Peer reviewe

    >

    No full text

    Laser printed nano-gratings: orientation and period peculiarities

    No full text
    Understanding of material behaviour at nanoscale under intense laser excitation is becoming critical for future application of nanotechnologies. Nanograting formation by linearly polarised ultra-short laser pulses has been studied systematically in fused silica for various pulse energies at 3D laser printing/writing conditions, typically used for the industrial fabrication of optical elements. The period of the nanogratings revealed a dependence on the orientation of the scanning direction. A tilt of the nanograting wave vector at a fixed laser polarisation was also observed. The mechanism responsible for this peculiar dependency of several features of the nanogratings on the writing direction is qualitatively explained by considering the heat transport flux in the presence of a linearly polarised electric field, rather than by temporal and spatial chirp of the laser beam. The confirmed vectorial nature of the light-matter interaction opens new control of material processing with nanoscale precision.Partial support via ARC Discovery DP120102980 is acknowledged

    3D photografting with aromatic azides: A comparison between three-photon and two-photon case

    Get PDF
    The final publication is available via https://doi.org/10.1016/j.optmat.2013.04.007.Photografting is a method utilizing light activation for covalent incorporation of functional molecules to a polymer surface or polymer matrix. It has been widely applied as a simple and versatile method for tailoring physical–chemical properties of various surfaces. Grafting induced via multi-photon absorption provides additional advantages of spatial and temporal control of the process. Here, a novel fluoroaryl azide photografting compound (AFA) was synthesized and compared with the commercially available azide BAC-M. Using Z-scan technique, it was determined that AFA is a two-photon absorber at 798 nm, whereas BAC-M is a three-photon absorber at this wavelength. Both azides were employed for 3D photografting within a PEG-based matrix using femtosecond laser pulses. Both Z-scan measurements and 3D photografting tests indicated that, the intensity threshold for nonlinear absorption and photografting process is lower for AFA. As a result the processing window of AFA is much broader than that of BACM. But on the other hand, since BAC-M is characterized by the three-photon absorption (3PA) process, patterns with finer features can be produced using this molecule. The choice of the appropriate compound for 3D grafting will depend on the final application and the requirements associated with the resolution and post-modification protocol

    Optical Performance of laser-patterned high-resistivity Silicon Wafer in the frequency range of 0.1-4.7 THz

    No full text
    Direct laser ablation (DLA) is a mask-less technology used for the research and development of optical components of various materials [1]. The relevance of the DLA technology is verified demonstrating the functional optical components including multilevel phase Fresnel lenses on silicon and Soret zone plates developed on a free standing metal-foil [2]. In order to reduce the reflection losses, the anti-reflection structures on a back side of silicon wafer can be patterned by the same DLA technology as this has been proposed recently [3]. In this work we studied optical transmission of laser patterned high resistivity silicon wafers used for development of the diffractive optics in the frequency range of 0.1 – 4.7 THz. The samples were prepared on a 500 µm thick, both-sides polished, high resistivity silicon wafer varying the surrounding environment as well as the DLA parameters in order to modify the composition and roughness of the surface modified. Most of the samples were fabricated in an ambient air, while others were developed in an argon-rich atmosphere at the pressure of 1 atm and 2 atm. Stylus profiler and scanning electron microscope were employed to characterize the samples morphology. Optical performances were studied measuring with a Golay cell detector the transmittance of the THz beam of a quantum cascade laser (QCL) operating at 2.5, 3.1, and 4.7 THz. The dielectric constants dispersion for each sample was also obtained by a THz time domain spectroscopy (TDS). Dependence of transmittance on surface roughness at different THz frequency allowed us to identify the critical value Ra at which the transmittance dropped by 20%. For example data presented in Fig. 1 indicates that the critical Ra value at frequency 4.7 THz is of about 1.9 m. We will discuss a nonlinear dependence of the critical Ra value on the THz radiation frequency. The impact of silicon processing in an oxygen-free environment to the transmittance performance will also be demonstrated and discussed

    Laser-processed diffractive lenses for the frequency range of 4.7 THz

    No full text
    The development of diffractive lenses for the upper terahertz (THz) frequency range above 1 THz was successfully demonstrated by employing a direct laser ablation (DLA) technology. Two types of samples such as the Soret Zone plate lens and the multi-level phase-correcting Fresnel lens were fabricated of a metal foil and crystalline silicon, respectively. The focusing performance along the optical axis of a 4.745 THz quantum cascade laser beam with respect to the positioning angle of the sample was studied by using a realtime microbolometric camera. A binary-phase profile sample demonstrated the values of the focusing gain and focused beam size up to 25 dB and 0.15 mm (2.4λ), respectively. The increase of the phase quantization level to eight led to higher (up to 29 dB) focusing gain values without a measurable increase of optical losses. All the samples were tolerant to misalignment as large as 10 deg of oblique incidence with a focusing power drop no larger than 10%. The results pave the way for new applications of industry-ready DLA technology in the entire THz range

    In situ formation and photo patterning of emissive quantum dots in organic small molecules

    No full text
    We acknowledge financial support from FP7 LAMP project “Laser Induced Synthesis of Polymeric Nanocomposite Materials and Development of Micro-patterned Hybrid Light Emitting Diodes (LED) and Transistors (LET)” (Grant No. 247928). AKB and IDWS also acknowledge financial support from EPSRC Programme grant “Challenging the limits of photonics: Structured light” EP/J01771X/1. In addition IDWS acknowledges a Royal Society Wolfson Research Merit Award.Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. Here we report a novel method for the fabrication and patterning of metal selenide nanoparticles in organic semiconductor films that is compatible with solution processable large area device manufacturing. Our approach is based upon the controlled in-situ decomposition of cadmium selenide precursor complex in a film of the electron transporting material 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBI) by thermal and optical methods. Specifically we show that the photoluminescence quantum yield (PLQY) of the thermally converted CdSe quantum dots (QDs) in the TPBI film is up to 15%. We also show that laser illumination can form the QDs from the precursor. This is an important result as it enables direct laser patterning (DLP) of the QDs. DLP was performed on these nanocomposites using a picosecond laser. Confocal microscopy shows the formation of emissive QDs after laser irradiation. The optical and structural properties of the QDs were also analysed by means of UV-Vis, PL spectroscopy and transmission electron microscopy (TEM). The results show that the QDs are well distributed across the film and their emission can be tuned over a wide range by varying the temperature or irradiated laser power on the blend films. Our findings provide a route to the low cost patterning of hybrid electroluminescent devices.Publisher PDFPeer reviewe

    Carrier-envelope phase controlled dynamics of relativistic electron beams in a laser-wakefield accelerator

    No full text
    International audienceIn laser-wakefield acceleration, an ultra-intense laser pulse is focused into an underdense plasma to accelerate electrons to relativistic velocities. In most cases, the pulses consist of multiple optical cycles and the interaction is well described in the framework of the ponderomotive force where only the envelope of the laser has to be considered. But when using single-cycle pulses, the ponderomotive approximation breaks down, and the actual waveform of the laser has to be taken into account. In this paper, we use nearsingle-cycle laser pulses to drive a laser-wakefield accelerator. We observe variations of the electron beam pointing on the order of 10 mrad in the polarization direction, as well as 30% variations of the beam charge, locked to the value of the controlled laser carrier-envelope phase, in both nitrogen and helium plasma. Those findings are explained through particle-in-cell simulations indicating that low-emittance, ultrashort electron bunches are periodically injected off-axis by the transversally oscillating bubble associated with the slipping carrier-envelope phase
    corecore